前言
在算法问题中,如何高效处理数组区间的修改操作是一个常见且重要的话题。比如:
- 需要在一个数组的多个区间上进行加减操作,最终输出结果;
- 频繁调整数组部分区间的值,但需要快速恢复整体状态;
- 处理二维平面或更高维数据的区域更新问题。
通常,我们可以使用暴力遍历的方法,但当数组规模较大、操作次数较多时,暴力方法的效率会迅速成为瓶颈。这时,我们就需要一种能够在常数时间内完成区间修改的高效工具 —— 差分数组。
差分数组是一种借助“记录变化”而非直接修改原数组的巧妙方法。通过它,我们不仅可以快速处理区间修改,还可以在多次操作后迅速恢复最终的数组状态。
什么是差分数组
给定一个数组 arr,我们可以通过一个差分数组 diff 来表示 arr 的变化:
- \(diff[0]\) = \(arr[0]\)
- \(diff[i]\) = \(arr[i] - arr[i - 1],(i > 0)\)
根据差分数组我们可以反推原数组:
- \(arr[0]\) = \(diff[0]\)
- \(arr[1]\) = \(diff[1] + arr[0] = diff[1] + diff[0]\)
- \(arr[2]\) = \(diff[2] + arr[1] = diff[2] + diff[1] + diff[0]\)
- ···
不难看出,差分数组的前缀和即原数组 arr,所以差分数组的题目 tag 往往也包含前缀和。
区间更新
差分数组最常见的应用是区间更新。假设我们希望在数组 arr 的区间 [l, r] 中所有元素都加上一个值 v, 差分数组的做法是:
- 创建一个差分数组 diff,数组 size 比原数组 size 大 1,初始化为 0
- 对每次区间操作进行处理,更新差分数组:
diff[l] += v diff[r + 1] -= v
- 通过差分数组恢复更新后的原数组 arr
差分数组的复杂度
- 时间复杂度: O(n + q),其中 n 是数组长度,q 是区间修改的操作次数。
- 空间复杂度: O(n)
LeetCode 3355
You are given an integer array nums of length n and a 2D array queries, where \(queries[i] = [l_i, r_i]\).
For each queries[i]:
- Select a subset of indices within the range \([l_i, r_i]\) in nums.
- Decrement the values at the selected indices by 1.
A Zero Array is an array where all elements are equal to 0.
Return true if it is possible to transform nums into a Zero Array after processing all the queries sequentially, otherwise return false.
Example 1:
Input: nums = [1,0,1], queries = [[0,2]]
Output: true
Explanation:
For i = 0:
Select the subset of indices as [0,2] and decrement the values at these indices by 1.
The array will become [0,0,0], which is a Zero Array.
Example 2:
Input: nums = [4,3,2,1], queries = [[1,3],[0,2]]
Output: false
Explanation:
For i = 0:
Select the subset of indices as [1,2,3] and decrement the values at these indices by 1.
The array will become [4,2,1,0].
For i = 1:
Select the subset of indices as [0,1,2] and decrement the values at these indices by 1.
The array will become [3,1,0,0], which is not a Zero Array.
Constraints:
- 1 <= nums.length <= \(10^5\)
- 0 <= nums[i] <= \(10^5\)
- 1 <= queries.length <= \(10^5\)
- queries[i].length == 2
- 0 <= \(l_i\) <= \(r_i\) < nums.length
Approach:
class Solution {
fun isZeroArray(nums: IntArray, queries: Array<IntArray>): Boolean {
val diffArray = IntArray(nums.size + 1)
queries.forEach { (l, r) ->
diffArray[l]--
diffArray[r + 1]++
}
val prefixSum = diffArray.runningReduce { acc, n -> acc + n }
nums.forEachIndexed { i, n ->
if (n + prefixSum[i] > 0) return false
}
return true
}
}