pow(x, n)
Implement pow(x, n)
, which calculates x raised to the power n (i.e., \(x^n\)).
Example 1:
Input: x = 2.00000, n = 10
Output: 1024.00000
Example 2:
Input: x = 2.10000, n = 3
Output: 9.26100
Example 3:
Input: x = 2.00000, n = -2
Output: 0.25000
Explanation: 2-2 = 1/22 = 1/4 = 0.25
Constraints:
- -100.0 < x < 100.0
- \(-2^{31}\) <= n <= \(2^{31}-1\)
- n is an integer.
- Either x is not zero or n > 0.
- \(-10^4\) <= \(x^n\) <= \(10^4\)
位运算
double myPow(double x, int n) {
long num = n;
if(n < 0) {
x = 1 / x;
num = -num;
}
double pow = 1;
while (num > 0) {
if ((num & 1) != 0) pow *= x;
num >>= 1;
x *= x;
}
return pow;
}
位运算“优化版”
int numberOfTrailingZeros(long n) {
if (n == 0) return 0;
float f = (float)(n & -n);
return (*(unsigned int *)&f >> 23) - 0x7f;
}
double myPow(double x, int n) {
long num = n;
if(n < 0) {
x = 1 / x;
num = -num;
}
double pow = 1;
int cnt = 0;
while(num > 0) {
int count = numberOfTrailingZeros(num);
while(cnt < count) {
x *= x;
cnt++;
}
pow *= x;
num = num & (num - 1);
}
return pow;
}
优化用到了一种 countOneBits 方案的思想,快速跳过 n 二进制中连续的 0,但是另一方面又需要用到跳过 0 的个数来计算乘积,所以最终并没有起到优化作用,反倒可能因统计 trailing zeros 而更加耗时。
不过不失为一种思路,特别是统计 trailing zeros 函数相当精妙(lowbit + bit hack)。